Species composition affects yield and nutritive value of binary legume-grass mixtures

Tremblay G.F.¹, Bélanger G.¹, Dos Passos Bernardes, A.¹, Papadopoulos Y.A.², Fillmore S.A.E.², Lajeunesse J.¹, and Duynisveld, J.²

^{1,2}Agriculture and Agri-Food Canada, ¹Québec, QC, Canada, G1V 2J3, ²Kentville, NS, Canada, B4N 1J5

Introduction

• Legume-grass mixtures provide more consistent forage yield than grass or legume monocultures (Sleugh et al. 2000; Sturludóttir et al. 2013).

• Performance and nutritive value of mixtures with recommended grass and legume species in eastern Canada are not well documented.

• Objective : To identify binary legume-grass mixtures with high forage yield and nutritive value under both frequent clipping and cattle grazing.

Materials & methods

18 binary mixtures one of 3 legume species:

Birdsfoot trefoil (*Lotus corniculatus* L.) Lucerne (*Medicago sativa* L.), grazing type White clover (*Trifolium repens* L.) plus one of 6 grass species:

Cocksfoot (*Dactylis glomerata* L.) Kentucky bluegrass (Poa pratensis L.) Meadow bromegrass (*Bromus biebersteinii*) Meadow fescue (*Festuca pratensis* L.) Tall fescue (*Schedonorus phoenix*) Timothy (*Phleum pratense* L.)

Three sites

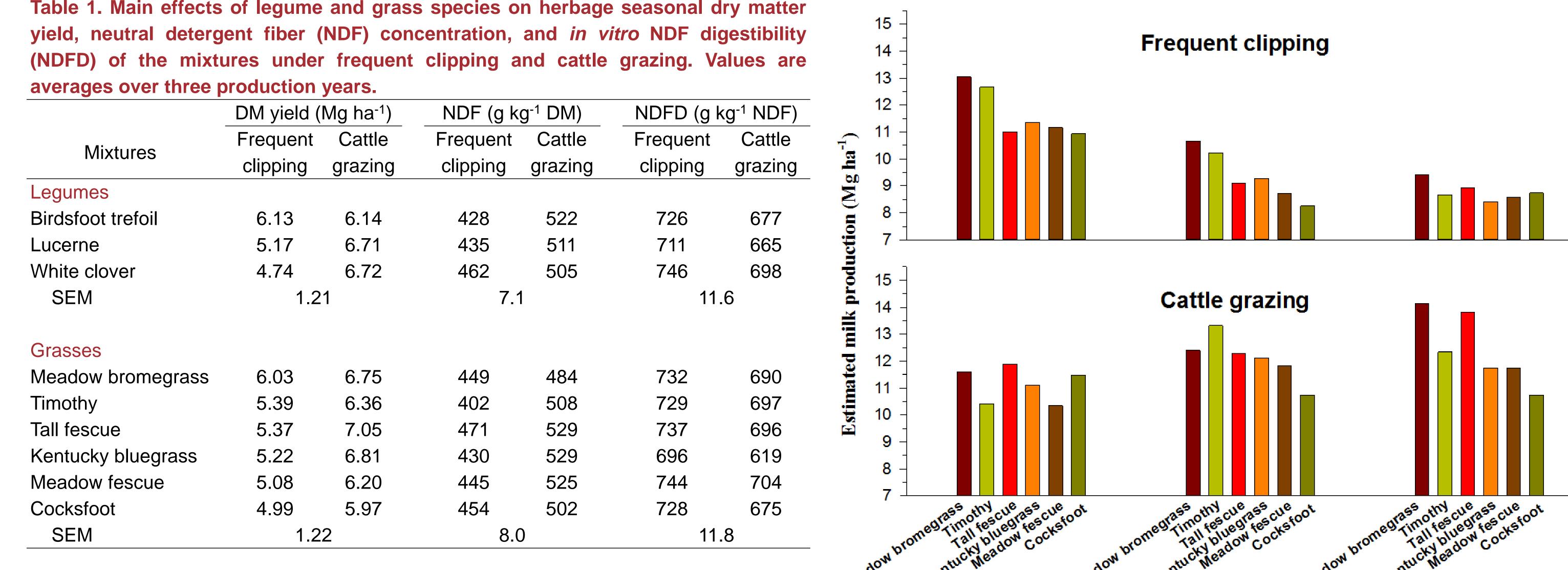
- Normandin and Lévis Frequent clipping with a forage harvester.
- Nappan: Cattle grazing.

Experimental design

• Split-plot with legume species as main plots and grass species as subplots; 3 replications.

Sampling

• In the first three post-seeding years, plots were clipped or grazed when timothy reached 25 cm in height.


Laboratory and data analysis

- A subset of herbage samples were analysed for neutral detergent fibre (NDF) concentration and *in vitro* digestibility of NDF. Nutritive attributes were then estimated by near infrared reflectance spectroscopy in all herbage samples.
- Potential milk production was estimated with MILK2006 (Shaver *et al.* 2006).
- Analysis of variance with treatments and harvest methods (clipping and cattle grazing) as fixed effects using GENSTAT 14 statistical software.

Results & discussion

Table 1. Main effects of legume and grass species on herbage seasonal dry matter

	DM yield (DM yield (Mg ha ⁻¹)		NDF (g kg ⁻¹ DM)		NDFD (g kg ⁻¹ NDF)	
Mixtures	Frequent	Cattle	Frequent	Cattle	Frequent	Cattle	
	clipping	grazing	clipping	grazing	clipping	grazing	

Birdsfoot trefoil Figure 1. Estimated milk production per hectare for 18 binary legume-grass mixtures under frequent clipping and cattle grazing. Values are averages over three production years (SEM = 2.28 Mg ha^{-1}).

Lucerne

• Legume and grass species affected herbage DM yield, NDF concentration, and NDFD (Table 1) but this effect varied with the harvest method for DM yield and NDF concentration.

• Estimated milk production was greatest with birdsfoot trefoil-based mixtures under frequent clipping but lowest under cattle grazing (Fig. 1). It was greatest with timothy and meadow bromegrass-based mixtures under both frequent clipping and cattle grazing (Fig. 1).

Conclusions

• Frequent clipping and cattle grazing affected differently the performance of legume-grass mixtures, primarily the legume component.

• Meadow bromegrass performed very well with the three legume species under both frequent clipping and cattle grazing.

References

Shaver et al. 2006 Univ. of Wisconsin; Sleugh et al. 2000. Agron. J. 92:4; Sturludóttir et al. 2013. Grass Forage Sci. 69:229.

Acknowledgements

This study was funded by the Beef Cattle Research Council, a division of the Canadian Cattlemen's Association, and by Agriculture and Agri–Food Canada.

© 2016. Scientific poster presented at the 2016 Joint Conference NAAIC (North American Alfalfa Improvement Conference), Trifolium, & Grass Breeders, July 12-14, 2016, Madison, Wisconsin.

White clover